Running a MAUT Model

Introduction

The decision models based in Multi Attribute Utility Theory (MAUT) are defined with aid of utility functions u1, …, un which are evaluated over indexes x1, …, xn and those utilities are aggregated considering additional weights w1, …, wn, the whole final utility is given by the sum $$u(x_1,\ldots,x_n) = \sum_{i=1}^n\, w_i\, u_i\ ( x_i )$$ every utility ui can be normalized to take values only between 0 and 1.

A model based in MAUT additionally has a decision tree that represents the relations between subsets of utilities, given an ordered and conceptual development of the decision model.

This mau package is designed to implement and test decision models based in (MAUT).

Utility definition

The utility functions for a MAUT model could be defined in a practical format when the utilities are piecewise defined like Constant Risk Averse Utilities (CRAU for short), satisfying the equation: $$ \frac{u''}{u'} = \lambda $$ being λ a constant. The previous equation only admits two kind of solutions, u(x) = a ⋅ x + b or u(x) = a ⋅ eb ⋅ x + c. To completely determine an utility, it is only necessary to know the three parameters a, b, c. Additionally, the following convention is assumed, if c is 0 then the utility is linear otherwise is an exponential function.

For piecewise CRAU, it is only necessary to define the parameters a, b, c of the function for each part of the domain of definition. The mau package could load the utilities from an standardized text file with the following internal structure.

The capabilities of mau are not only restricted to work with CRAU class, you can define any utility by employing the correct R script.

Header

Function name
min1 max1 a1 b1 c1
min2 max2 a2 b2 c2
min3 max3 a3 b3 c3

Function name
min1 max1 a1 b1 c1
min2 max2 a2 b2 c2
min3 max3 a3 b3 c3

Here an example of the structure of the standardized file for utility definitions

library( mau )
file <- system.file( "extdata", "utilities.txt", package = "mau" )
lines <- readLines( file )
for ( i in 1:length( lines ) ) { 
  cat( lines[i], '\n' )
}
## Utilities 
##  
## Project 
##  1   2   1.5 -0.5    0 
##  2   3   1.5 -0.5    0 
##  
## Self implementation 
##  1   2   1.5 -0.5    0 
##  2   3   1.5 -0.5    0 
##  
## External and local relations 
##  1   10  1   0   0 
##  0   1   0   1   0 
##  
## Scope of capabilities 
##  6   15  1   0   0 
##  0   6   1.225   -1.225  0.2824

Main example

In the sources below is developed a complete example of a MAUT model, the package mau is employed to load utilities defined in the file utilities.txt, automatically the script with utilities is built and saved in the local working directory, after that with eval_utilities every function is evaluated over the columns of the index table, the names for utilities were previously standardized with stand_string. With another file tree.csv the decision tree associated to the MAUT model is built and every weight and relative weight assigned with the make_decision_tree function, in addition the whole model with utilities of every criteria is obtained with compute_model. The simulation of constrained weights is made with sim_const_weights, the result could be employed for a sensitivity test of the decision model regarding concentrated weights variation.

  1. Loading necessary packages
library( mau )
library( data.table )
library( igraph )
library( ggplot2 )
  1. Index definition
index <- data.table( cod = paste( 'A', 1:10, sep = '' ), 
                     i1 = c( 0.34, 1, 1, 1, 1, 0.2, 0.7, 0.5, 0.11, 0.8 ),
                     i2 = c( 0.5, 0.5, 1, 0.5, 0.3, 0.1, 0.4, 0.13, 1, 0.74 ), 
                     i3 = c( 0.5, 1.0, 0.75, 0.25, 0.1, 0.38, 0.57, 0.97, 0.3, 0.76 ),
                     i4 = c( 0, 0.26, 0.67, 0.74, 0.84, 0.85, 0.74, 0.65, 0.37, 0.92 ) )
cod i1 i2 i3 i4
A1 0.34 0.50 0.50 0.00
A2 1.00 0.50 1.00 0.26
A3 1.00 1.00 0.75 0.67
A4 1.00 0.50 0.25 0.74
A5 1.00 0.30 0.10 0.84
A6 0.20 0.10 0.38 0.85
A7 0.70 0.40 0.57 0.74
A8 0.50 0.13 0.97 0.65
A9 0.11 1.00 0.30 0.37
A10 0.80 0.74 0.76 0.92
  1. Loading file with utilities
file <- system.file( "extdata", "utilities.txt", package = "mau" )
script <- 'utilities.R'
lines <- 17
skip <- 2
encoding <- 'utf-8'
functions <- read_utilities( file, script, lines, skip, encoding )
source( 'utilities.R' )

The functions data.table has the following structure with the piecewise definition of CRAU’s

nom min max a b c fun
External and local relations 0 1 0.000 1.000 0.0000 external_local_relations
External and local relations 1 10 1.000 0.000 0.0000 external_local_relations
Project 1 2 1.500 -0.500 0.0000 project
Project 2 3 1.500 -0.500 0.0000 project
Scope of capabilities 0 6 1.225 -1.225 0.2824 scope_capabilities
Scope of capabilities 6 15 1.000 0.000 0.0000 scope_capabilities
Self implementation 1 2 1.500 -0.500 0.0000 self_implementation
Self implementation 2 3 1.500 -0.500 0.0000 self_implementation
  1. Evaluation of utilities over every index
# Index positions
columns <- c( 2, 3, 4, 5 )

# Function names
functions <- sapply( c( 'Project', 
                        'Self implementation',
                        'External and local relations', 
                        'Scope of capabilities' ),
                     FUN = stand_string )
names( functions ) <- NULL

# Evaluation of utilities
utilities <- eval_utilities( index, columns, functions )

The utilities data.table has the following structure

cod u1 u2 u3 u4
A1 0 0 0.50 0.0000000
A2 1 0 1.00 0.0867217
A3 1 1 0.75 0.2111724
A4 1 0 0.25 0.2310170
A5 1 0 0.10 0.2586944
A6 0 0 0.38 0.2614194
A7 0 0 0.57 0.2310170
A8 0 0 0.97 0.2054301
A9 0 1 0.30 0.1215376
A10 0 0 0.76 0.2802804
  1. Construction of the decision tree
file <- system.file("extdata", "tree.csv", package = "mau" )
tree.data <- read_tree( file, skip = 0, nrow = 8 )
tree <- make_decision_tree( tree.data )
utilities <- eval_utilities( index, columns, functions )

plot( tree, layout = layout_as_tree )

  1. Computing the decision model
weights <- tree.data[ !is.na( weight ) ]$weight
model <- compute_model( tree, utilities, weights )
id name cod index deep utility relative.utility weight relative.weight
1 Performance A1 NA 0 0.0500000 0.0500000 1.0 1.0000000
1 Performance A2 NA 0 0.3173443 0.3173443 1.0 1.0000000
1 Performance A3 NA 0 0.8172345 0.8172345 1.0 1.0000000
1 Performance A4 NA 0 0.2712034 0.2712034 1.0 1.0000000
1 Performance A5 NA 0 0.2617389 0.2617389 1.0 1.0000000
1 Performance A6 NA 0 0.0902839 0.0902839 1.0 1.0000000
1 Performance A7 NA 0 0.1032034 0.1032034 1.0 1.0000000
1 Performance A8 NA 0 0.1380860 0.1380860 1.0 1.0000000
1 Performance A9 NA 0 0.5543075 0.5543075 1.0 1.0000000
1 Performance A10 NA 0 0.1320561 0.1320561 1.0 1.0000000
2 Planing A1 NA 1 0.0000000 0.0000000 0.7 0.7000000
2 Planing A2 NA 1 0.2000000 0.2857143 0.7 0.7000000
2 Planing A3 NA 1 0.7000000 1.0000000 0.7 0.7000000
2 Planing A4 NA 1 0.2000000 0.2857143 0.7 0.7000000
2 Planing A5 NA 1 0.2000000 0.2857143 0.7 0.7000000
2 Planing A6 NA 1 0.0000000 0.0000000 0.7 0.7000000
2 Planing A7 NA 1 0.0000000 0.0000000 0.7 0.7000000
2 Planing A8 NA 1 0.0000000 0.0000000 0.7 0.7000000
2 Planing A9 NA 1 0.5000000 0.7142857 0.7 0.7000000
2 Planing A10 NA 1 0.0000000 0.0000000 0.7 0.7000000
3 Capabilities A1 NA 1 0.0500000 0.1666667 0.3 0.3000000
3 Capabilities A2 NA 1 0.1173443 0.3911478 0.3 0.3000000
3 Capabilities A3 NA 1 0.1172345 0.3907816 0.3 0.3000000
3 Capabilities A4 NA 1 0.0712034 0.2373447 0.3 0.3000000
3 Capabilities A5 NA 1 0.0617389 0.2057963 0.3 0.3000000
3 Capabilities A6 NA 1 0.0902839 0.3009463 0.3 0.3000000
3 Capabilities A7 NA 1 0.1032034 0.3440113 0.3 0.3000000
3 Capabilities A8 NA 1 0.1380860 0.4602868 0.3 0.3000000
3 Capabilities A9 NA 1 0.0543075 0.1810251 0.3 0.3000000
3 Capabilities A10 NA 1 0.1320561 0.4401870 0.3 0.3000000
4 Project A1 1 2 0.0000000 0.0000000 0.2 0.2857143
4 Project A2 1 2 0.2000000 1.0000000 0.2 0.2857143
4 Project A3 1 2 0.2000000 1.0000000 0.2 0.2857143
4 Project A4 1 2 0.2000000 1.0000000 0.2 0.2857143
4 Project A5 1 2 0.2000000 1.0000000 0.2 0.2857143
4 Project A6 1 2 0.0000000 0.0000000 0.2 0.2857143
4 Project A7 1 2 0.0000000 0.0000000 0.2 0.2857143
4 Project A8 1 2 0.0000000 0.0000000 0.2 0.2857143
4 Project A9 1 2 0.0000000 0.0000000 0.2 0.2857143
4 Project A10 1 2 0.0000000 0.0000000 0.2 0.2857143
5 Self implementation A1 2 2 0.0000000 0.0000000 0.5 0.7142857
5 Self implementation A2 2 2 0.0000000 0.0000000 0.5 0.7142857
5 Self implementation A3 2 2 0.5000000 1.0000000 0.5 0.7142857
5 Self implementation A4 2 2 0.0000000 0.0000000 0.5 0.7142857
5 Self implementation A5 2 2 0.0000000 0.0000000 0.5 0.7142857
5 Self implementation A6 2 2 0.0000000 0.0000000 0.5 0.7142857
5 Self implementation A7 2 2 0.0000000 0.0000000 0.5 0.7142857
5 Self implementation A8 2 2 0.0000000 0.0000000 0.5 0.7142857
5 Self implementation A9 2 2 0.5000000 1.0000000 0.5 0.7142857
5 Self implementation A10 2 2 0.0000000 0.0000000 0.5 0.7142857
6 External and local relations A1 3 2 0.0500000 0.5000000 0.1 0.3333333
6 External and local relations A2 3 2 0.1000000 1.0000000 0.1 0.3333333
6 External and local relations A3 3 2 0.0750000 0.7500000 0.1 0.3333333
6 External and local relations A4 3 2 0.0250000 0.2500000 0.1 0.3333333
6 External and local relations A5 3 2 0.0100000 0.1000000 0.1 0.3333333
6 External and local relations A6 3 2 0.0380000 0.3800000 0.1 0.3333333
6 External and local relations A7 3 2 0.0570000 0.5700000 0.1 0.3333333
6 External and local relations A8 3 2 0.0970000 0.9700000 0.1 0.3333333
6 External and local relations A9 3 2 0.0300000 0.3000000 0.1 0.3333333
6 External and local relations A10 3 2 0.0760000 0.7600000 0.1 0.3333333
7 Scope of capabilities A1 4 2 0.0000000 0.0000000 0.2 0.6666667
7 Scope of capabilities A2 4 2 0.0173443 0.0867217 0.2 0.6666667
7 Scope of capabilities A3 4 2 0.0422345 0.2111724 0.2 0.6666667
7 Scope of capabilities A4 4 2 0.0462034 0.2310170 0.2 0.6666667
7 Scope of capabilities A5 4 2 0.0517389 0.2586944 0.2 0.6666667
7 Scope of capabilities A6 4 2 0.0522839 0.2614194 0.2 0.6666667
7 Scope of capabilities A7 4 2 0.0462034 0.2310170 0.2 0.6666667
7 Scope of capabilities A8 4 2 0.0410860 0.2054301 0.2 0.6666667
7 Scope of capabilities A9 4 2 0.0243075 0.1215376 0.2 0.6666667
7 Scope of capabilities A10 4 2 0.0560561 0.2802804 0.2 0.6666667
  1. Bar plot for every utility
xlab <- 'Utility'
ylab <- 'Institutions'
title <- 'Criteria utilities'

colors <- c( 'dodgerblue4', 'orange', 'gold', 'red3' )
deep <- 2
bar <- bar_plot( model, deep, colors, title, xlab, ylab )
plot( bar )

  1. Sensitivity analysis under weights change. The weights are simulated employing a Dirichlet distribution.
n <- 800
alpha <- c( 0.2, 0.5, 0.1, 0.2 )
constraints <- list( list( c(1,2), 0.7 ), 
                     list( c(3,4), 0.3 ) )
S <- sim_const_weights( n, utilities, alpha, constraints )
plot.S <- plot_sim_weight( S$simulation, title = 'Simulations', 
                           xlab = 'ID', ylab = 'Utility' ) 

plot( plot.S )